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Overview
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• What is Yoga?

• Library – what and why

• Executable – purpose and usage

• Demo simple case

• Generating composite grid

• Input files

• Spot check / visualize

• Output files

• Standalone domain assembly

• Input files

• Spot check / visualize

• Demo rotorcraft case

• Auto-generate Yoga inputs from FUN3D inputs

• Repeat steps from previous demo case

This tutorial assumes some familiarity using 

FUN3D with Suggar++ as demonstrated in 

previous tutorials and workshops, which are 

available on the FUN3D website:

https://fun3d.larc.nasa.gov/tutorial-

2.html#overset_moving_grids

https://fun3d.larc.nasa.gov/training-7.html

https://fun3d.larc.nasa.gov/tutorial-2.html#overset_moving_grids
https://fun3d.larc.nasa.gov/training-7.html


What is Yoga?
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• Yoga library

• Alternative to Suggar++ library for FUN3D 

with minimal workflow changes

• Performs domain assembly in parallel with 

dynamic load balancing

• Called by FUN3D at each time step

• Determine overset boundary locations

• Identify donors/receptors

• Calculate interpolation weights

• Exchange/interpolate solution values

• Runs on same MPI ranks as FUN3D

• No extra, high memory node required

• Scalable to hundreds of millions of grid 

points on thousands of MPI ranks

• Yoga executable

• Self documenting

• Combine component grids -> composite grid

• Standalone domain assembly

• Spot check donor/receptor/orphan counts

• Visualize via ParaView / Tecplot

• Export FUN3D partition files

• Extract rotorcraft-specific input data from 

FUN3D input files to maintain consistency



Building FUN3D with Yoga

4

FUN3D v14 ships with Yoga, which can be enabled by adding the following 

pair of options:

--enable-yoga --with-nanoflann=/path/to/nanoflann

Where nanoflann is a header-only nearest-neighbor library that Yoga uses:

https://github.com/jlblancoc/nanoflann/archive/refs/tags/v1.3.0.tar.gz

YOGA is incompatible with the latest version of nanoflann

Please use version 1.3.0 for YOGA compilation

https://github.com/jlblancoc/nanoflann/archive/refs/tags/v1.3.0.tar.gz


Yoga executable
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The Yoga executable uses a sub-command model, much like 

other tools like `git`

yoga <subcommand> <args>

Yoga is self documenting via `-h` or `--help`, like many Unix 

utilities:

yoga --help

yoga -h

Which will print out all available subcommands and a 

description of what they do.  Each subcommand is also self 

documenting, so

yoga <subcommand> --help

Will print out information about argument names, defaults, and 

descriptions for the selected subcommand



Store separation tutorial case
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store_separation/

README

grids/

README

composite.txt

wing.lb8.ugrid

wing.mapbc

store.lb8.ugrid

store.mapbc

yoga_bcs.txt

steady_state/

README

fun3d.nml

rigid_motion/

README

fun3d.nml

moving_body.input

This tutorial case walks through the steps for creating a 

composite grid for FUN3D, running a steady-state case, and 

finally running with specified motion.

All required input files are provided along with a README in 

each directory to describe each phase.



Examine component grids

7

cd grids

inf plot --mesh wing.lb8.ugrid --tags 6:14 -o wing-surface.vtk

inf plot --mesh store.lb8.ugrid --tags 1:44 -o store-surface.vtk

First, let’s take a look at the component grids to make sure that everything looks reasonable geometrically.  By 

looking at the mapbc files of each component, we can see that the solid surfaces of the wing are defined by 

boundary tags 6–14 and the solid surfaces of the store are defined by tags 1–44.

Let’s extract the surfaces from each grid and export to vtk (or change the extension to *.plt to get TecPlot instead):

Now, we can open in ParaView (or TecPlot) and verify that the 

boundaries are where we expect:



Creating a composite mesh
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Yoga’s help system lists information about input arguments for each subcommand, e.g.,

yoga make-composite --help

Required arguments are marked as such, and the one we are interested in for this case is:

-f --file <value> [REQUIRED]
name of composite builder script

which is the yoga input file that specifies the names of the component grids, their boundary condition files, 

and any translations or rotations to apply to the initial composite grid.

So, the full command for generating the composite grid with Yoga, from within the grids subdirectory, is:

yoga make-composite --file composite.txt -o wingstore.b8.ugrid

Analogous Suggar++ command:
suggar++ Input.xml



Creating a composite mesh

Three files are created by this command:

1. wingstore.b8.ugrid

2. wingstore.mapbc

3. imesh.dat

Where 1 and 2 contain the composite grid, and 3 

contains metadata about each component grid in the 

composite.  In particular, the imesh.dat file is plain text:

2
62014 1
79012 0

The first line is the number of component grids.  Then 

there is a line for each component that lists the number 

of grid points in the component and the “imesh” value for 

that component.

We can verify that the order is correct by checking 

the grid point counts of the component grids, e.g.,

inf examine --mesh store.lb8.ugrid

which will print:

Nodes in grid : 62,014
Total cells in grid: 358,759
TRI_3: 15,258
TETRA_4: 343,501

(repeat for wing.lb8.ugrid)

imesh.dat is analogous to 
xxxxx.dci in the Suggar++ workflow



Yoga – Composite grid input file
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# Comment lines beginning with `#` are ignored
# Input grids can be little endian, big endian,
# or a combination of the two.

grid store.lb8.ugrid
mapbc store.mapbc

# For moving body simulations, FUN3D's numbering convention
# dictates that moving body "imesh" values start at 1,
# and the stationary, or "background", grid should
# have an "imesh" value of 0. To facilitate this,
# Yoga assumes that the last component grid is the background
# grid and will assign it an index of 0 in the "imesh.dat" file.
# The other component grids can be in any order, but
# the last grid is expected to be the stationary one (which
# can be overridden by manually changing imesh.dat if necessary)

grid wing.lb8.ugrid
mapbc wing.mapbc

From demo case: /store_separation/grids/composite.txt

For Suggar++, component grids 

and their transformations are 

specified similarly in Input.xml. 

Note that boundary conditions 

are also set directly in Input.xml, 

whereas Yoga extracts boundary 

tag information from the *.mapbc

files.



Yoga – Composite grid input file
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Yoga’s help system also describes syntax for input files, which can be accessed via:

yoga show-syntax --help

In particular,

yoga show-syntax --composite

Shows how different translations, rotations, and arbitrary movement transformation matrices can be applied 

to individual component grids if required for a particular simulation.



Domain assembly dry run
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The following command will run Yoga in standalone mode on 8 MPI ranks and generate a visualization of the assembled 

grid system:

mpiexec_mpt -np 8 yoga assemble --file composite.txt --bc yoga_bcs.txt --viz assembly.vtk

(here again, changing the extension from .vtk -> .plt will yield a TecPlot binary)

Yoga prints some diagnostics during assembly, and we’re interested in the section at the end of the output that prints the 

global counts of in/out/receptor/orphan nodes.  Zero is the target number of orphans, but larger and more complex cases 

will often have a small fraction of orphan points.  If this number of orphans is more than ~1% of the number of receptors, 

that indicates that the something might be wrong with the case setup (incorrect boundary conditions, poorly matched grid 

spacing, incorrect grid locations, etc).

Yoga: in: 70229 out: 64441 receptor: 6356 orphan: 0
Total assembly time: 0.749044 seconds
max mean imbalance name
0.12 0.11 1.11 buildReceptorCollections
0.12 0.11 1.15 overdecompose
0.01 0.01 1.42 pack



ParaView for Overset Grids
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1) Select grid 0 (store)
2) Create slice, select direction/location
3) Check “crinkle slice” to get full cells (not 2D 

plane of chopped cells)
4) Select cell_statuses
5) Verify that in/out/receptor cells are in expected 

locations for the store grid:

Blue:   In

White: Out

Red:    Interpolation

1

2

3

4



ParaView for Overset Grids
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Then take a slice of the wing grid at the same location (y=0.0):

Blue:   In

White: Out

Red:    Interpolation

✓ Zero / few orphan points

✓ Interpolation boundaries

✓ Contiguous

✓ Relatively far from solid walls of each body

✓ In points near solid walls on each grid

✓ Points outside interpolation boundaries marked out



Steady state simulation
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The provided fun3d.nml file has the following addition:

&overset_data
assembler = 'yoga'
input_imesh_file = 'imesh.dat'
dci_on_the_fly = .true.
overset_flag = .true.

/

• FUN3D uses Suggar++ by default, so we set assembler to yoga to override

• imesh.dat is the text file that contains component grid node-counts and ids

• dci_on_the_fly is only ever false when running with Suggar++ .dci files

• overset_flag should always be set to true when running with Yoga or 

Suggar++

Note that the last two options could also be specified at the command line 

when running FUN3D, but setting via namelist is recommended.

A number of FUN3D options that 

are available when using Suggar++ 

have no effect when using Yoga, 

including:
• skip_dci_output
• reuse_existing_dci
• dci_period
• reset_dci_period
• dci_freq
• dci_dir
• input_xml_file



Steady state simulation
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In the steady_state/ directory, create soft links to the 

composite grid files:

ln -s ../grids/wingstore.b8.ugrid .
ln -s ../grids/wingstore.mapbc .
ln -s ../grids/imesh.dat .

Then launch FUN3D using the appropriate mpi command 

for your system, e.g.,

mpiexec_mpt -np 8 nodet_mpi

Then FUN3D will run the prescribed 500 iterations and 

write out a restart file that we will use as a starting point 

for the dynamic version of this case.



Prescribed motion simulation
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Moving grid is enabled via the global namelist:

&global
moving_grid = .true.
boundary_animation_freq = 5

/

With moving_grid enabled, FUN3D will read moving_body.input to determine which 

bodies need to be moved and what type of motion to use:

&body_definitions
n_moving_bodies = 1, ! number of bodies in motion
body_name(1) = 'store', ! name must be in quotes
n_defining_bndry(1) = 1, ! number of boundaries that define this body
defining_bndry(1,1) = 4, ! index 1: boundary number index 2: body number
mesh_movement(1) = 'rigid', ! 'rigid', 'deform'
motion_driver(1) = 'forced' ! motion is specified below

/

&forced_motion
translate(1) = 1, ! translation type: 1=constant rate 2=sinusoidal
translation_rate(1) = -0.2, ! translation velocity (mach)

/



Prescribed motion simulation
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Again, link the composite grid files to the current directory:

ln -s ../grids/wingstore.b8.ugrid .
ln -s ../grids/wingstore.mapbc .
ln -s ../grids/imesh.dat .

Also, copy over the restart file from the steady run to 

minimize the effect of the initial transients.

cp ../steady_state/wingstore.flow .

Then launch FUN3D using the appropriate mpi command 

for your system, e.g.,

mpiexec_mpt -np 8 nodet_mpi

This time, FUN3D will generate a boundary plot every 5 

time steps that we can use to verify that the prescribed 

motion is correct.



Viewing grid motion in TecPlot
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Rotorcraft tutorial case
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quadrotor/

README

grids/

README

blade-cw.b8.ugrid

blade-cw.mapbc

blade-ccw.b8.ugrid

blade-ccw.mapbc

box.b8.ugrid

box.mapbc

yoga_bcs.txt

flow/

README

fun3d.nml

rotor.input

moving_body.input

This tutorial case walks through the same steps as the 

previous example, with some additions that are unique to 

rotorcraft simulations.

All required input files are again provided along with a 

README in each directory to describe each phase.



Rotorcraft tutorial case
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rotor.input specifies:

• Number of rotors

• Blades per rotor

• Location of each rotor

• Orientation of each rotor

# Rotors Vinf_ratio Write Soln Force Ref Momment Ref

4 0.3732 1500 1.0 1.0

=== Front Right Rotor ===================================================

Rotor Type Load Type # Radial # Normal Tip Weight

1 1 50 180 0.0

X0_rotor Y0_rotor Z0_rotor phi1 phi2 phi3

-12.441437 12.441437 2.30397 0.00 0.00 0.00

Vt_ratio ThrustCoff PowerCoff psi0 PitchHinge DirRot

1.0 0.00457 -1.00 0.00 0.0 0

# Blades TipRadius RootRadius BladeChord FlapHinge LagHinge

3 9.2150 1.1058 0.57657 0.0 0.0



Rotorcraft tutorial case
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Yoga provides a subcommand to extract information from rotor.input and moving_body.input to generate 

an input file with the proper translations/rotations for each component grid.

So first, from the grids directory, link the input files:

cd grids
ln -s ../flow/rotor.input .
ln -s ../flow/moving_body.input .

Then run the following command to generate Yoga’s input file:

yoga composite-rotor

Analogous to running dci_gen
to generate Input.xml for Suggar++



Generating Yoga input file
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Inside the subcommand yoga composite-rotor, Yoga first parses the FUN3D input files to determine how 

many rotors and blades there are and where they go.  Then it prompts the user to fill in the grid names for 

each rotor and the background/fuselage grid.  Note that Yoga will provide a suggested name, which can 

be selected via “.” if the guessed name is correct. (user input highlighted)

Reading: rotor.input
Reading: moving_body.input
Number of rotors: 4
Enter blade grid name for <rotor-0> <counter-clockwise> (or '.' to use rotor.b8.ugrid): blade-ccw.b8.ugrid
Enter mapbc name (or '.' to use blade-ccw.mapbc): .
Enter blade grid name for <rotor-1> <clockwise> (or '.' to use blade-ccw.b8.ugrid): blade-cw.b8.ugrid
Enter mapbc name (or '.' to use blade-cw.mapbc): .
Enter blade grid name for <rotor-2> <clockwise> (or '.' to use blade-cw.b8.ugrid): .
Enter mapbc name (or '.' to use blade-cw.mapbc): .
Enter blade grid name for <rotor-3> <counter-clockwise> (or '.' to use blade-cw.b8.ugrid): blade-ccw.b8.ugrid
Enter mapbc name (or '.' to use blade-ccw.mapbc): .
Enter background grid filename: box.b8.ugrid
Enter mapbc name (or '.' to use box.mapbc): .



Generating Yoga input file
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The generated composite.txt file should now contain a section for each rotor blade that looks like the 

following:

grid rotor.b8.ugrid
mapbc rotor.mapbc
domain rotor1_blade2
move
-1.0000000000000000e+00 -1.2246467991473532e-16 0.0000000000000000e+00 5.0700000000000012e+00
1.2246467991473532e-16 -1.0000000000000000e+00 0.0000000000000000e+00 -1.8750000000000000e+01
0.0000000000000000e+00 0.0000000000000000e+00 1.0000000000000000e+00 6.7300000000000004e+00
0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1.0000000000000000e+00

Name extracted from moving_body.input

Translations/Rotations calculated from rotor.input



Generating the composite grid

25

Now, create the composite mesh as in the previous tutorial, but using the generated input file:

yoga make-composite --file composite.txt -o quadrotor.b8.ugrid

The composite mapbc file should now contain boundary conditions for all 12 blades and the 

background grid:

25
1 4000 rotor1_blade1
2 -1 rotor1_blade1_outer
3 4000 rotor1_blade2
4 -1 rotor1_blade2_outer
5 4000 rotor1_blade3
...
25 5000 box

Automatically renamed to match body 

name in moving_body.input



Visual inspection / spot check
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Now, let’s plot all 12 of the rotor blades by selecting their 

tags to make sure that they are in the expected locations:

mpiexec_mpt –np 8 inf plot --mesh quadrotor.b8.ugrid --tags 1,3,5,7,9,11,13,15,17,19,21,23 -o rotor-surfaces.vtk



mpiexec_mpt –np 13 yoga assemble --file composite.txt --bc yoga_bcs.txt --viz assembly.plt

Again, we can check the domain assembly by running Yoga in standalone mode to make sure 

everything looks ok before running with FUN3D.  Note, you will need at least the number of ranks 

as the number of component grids due to the I/O process used by standalone Yoga (13 for this 

case).

Domain assembly dry-run
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Select Tecplot this time

Blue:   In

Red:    Interpolation



Checking motion inputs
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From within the flow directory, link the composite mesh files:

cd ../flow

ln –s ../grids/quadrotor.b8.ugrid .
ln –s ../grids/quadrotor.mapbc .
ln –s ../grids/imesh.dat .

Uncomment the line in the fun3d.nml:

grid_motion_only = .true.

And change the boundary output frequency:

boundary_animation_freq = 5

Then run FUN3D (Note, any number of cores may be used)

mpiexec_mpt –np 40 nodet_mpi –ncyc 45 | grep Yoga | grep orphan

This will take some time as the pipes buffer the output.  Verify that the resulting 

output for each step has similar numbers of in/out/receptor/orphan points.  They 

should be different as the grids move, but not drastically so.

Yoga: in: 992837 out: 1398 receptor: 17099 orphan: 0

Turn on grid-motion-only and run ~45 steps with boundary animation to make sure the rotors are turning in the 

expected directions.  Note that the &overset_data namelist has no additional requirements beyond those covered for 

a non-rotorcraft case.



Running FUN3D
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After confirming that:

• Domain assembly appears correct

• Few orphan points relative to receptor points

• Interpolation boundaries in plausible locations

• Motion inputs are correct

• Blades move as expected with grid_motion_only

• Domain assembly statistics consistent across time steps

Comment the line in the fun3d.nml:

!grid_motion_only = .true.

The final step is to run FUN3D in the usual way:

mpiexec_mpt –np 40 nodet_mpi



What We Learned
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• How to use yoga executable and subcommands to:

• Create composite grids

• Spot check assembly

• Visually in Tecplot / ParaView

• By checking in/out/receptor/orphan counts

• Extract rotorcraft-specific input data via Yoga utility

• Rotor position, orientation, blade-count from rotor.input

• Body names from moving_body.input

• Input file format and requirements

• Yoga – composite grid input

• Yoga – boundary condition input

• FUN3D – namelist parameter changes


